Intelligent Computing Techniques for the Detection of Sleep Disorders: A Review
نویسندگان
چکیده
Intelligent computing methods and knowledge based systems are well known techniques used for the detection of various medical disorders. This paper is based on the review of various intelligent computing methods that are used to detect sleep disorders. The main concern is based on the detection of sleep disorders such as sleep apnea, insomnia, parasomnia and snoring. The most common diagnostic methods used by many researchers are based on knowledge-based system (KBS), rule based reasoning (RBR), case based reasoning (CBR), fuzzy logic (FL), artificial neural network (ANN), support vector machine(SVM), multi-layer perceptron (MLP) neural network, genetic algorithm (GA), k-nearest neighbor (k-NN), hybrid neural network, bayesian network (BN), data mining (DM) and many other integrated approaches. In traditional approach questionnaire was used for the detection of various disorders that is now overcome with all above mentioned techniques to enhance the accuracy, sensitivity and specificity
منابع مشابه
Effect of Valerian on Sleep Disorder in Postmenopausal Women: A Systematic Review
Introduction: Menopause-related sleep problems do not necessarily affect the amount of sleep but also the quality of sleep. The most likely mechanism of action of valerian on sleep is its effect on GABA receptors. The aim of this study was to summarize the results of clinical trials on the effect of valerian on sleep disorders in postmenopausal women by systematic review. Materials and Methods...
متن کاملApplication of non-linear regression and soft computing techniques for modeling process of pollutant adsorption from industrial wastewaters
The process of pollutant adsorption from industrial wastewaters is a multivariate problem. This process is affected by many factors including the contact time (T), pH, adsorbent weight (m), and solution concentration (ppm). The main target of this work is to model and evaluate the process of pollutant adsorption from industrial wastewaters using the non-linear multivariate regression and intell...
متن کاملApplication of statistical techniques and artificial neural network to estimate force from sEMG signals
This paper presents an application of design of experiments techniques to determine the optimized parameters of artificial neural network (ANN), which are used to estimate force from Electromyogram (sEMG) signals. The accuracy of ANN model is highly dependent on the network parameters settings. There are plenty of algorithms that are used to obtain the optimal ANN setting. However, to the best ...
متن کاملAn approach to fault detection and correction in design of systems using of Turbo codes
We present an approach to design of fault tolerant computing systems. In this paper, a technique is employed that enable the combination of several codes, in order to obtain flexibility in the design of error correcting codes. Code combining techniques are very effective, which one of these codes are turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the c...
متن کاملA review of neural network detection methods for breast cancer: review article
Breast cancer is the most common cancer among women and the earlier it is diagnosed, the easier it is to treat. The most common way to diagnose breast cancer is mammography. Mammography is a simple chest x-ray and a tool for early detection of non-palpable breast cancers and tumors. However, due to some limitations of this method such as low sensitivity especially in dense breasts, other method...
متن کامل